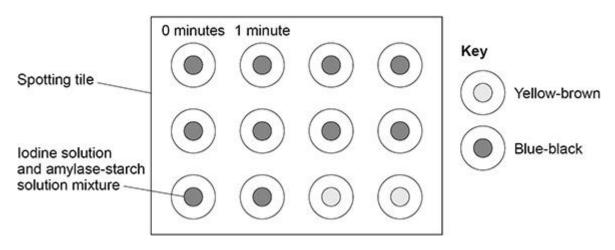

Protease

Questions are for both separate science and combined science students unless indicated in the question

Q1				
	Carb	ohydrates are needed as part of a bala	nced diet.	
	(a)	Which formula shows glucose?		
		Tick (✓) one box.		
		C ₆ H ₁₂ O ₆		
		CO ₂		
		H ₂ O		
		O ₂		
				(1)
	(b)	Which type of enzyme breaks down st	arch?	
		Tick (✓) one box.		
		Carbohydrase		
		Lipase		

A student investigated the effect of temperature on the activity of the enzyme amylase.

Figure 1 shows the apparatus used.


This is the method used.

- 1. Set up the apparatus as shown in Figure 1.
- 2. After 5 minutes, pour the starch solution into the amylase solution and mix.
- 3. Remove one drop of the amylase-starch solution mixture and place onto a spotting tile.
- Immediately add two drops of iodine solution to the amylase-starch solution 4. mixture on the spotting tile.
- 5. Record the colour of the iodine solution added to the amylase-starch
- 6

	solution mixture.	,
ô.	Repeat steps 3 to 5 every minute until the	e iodine solution is yellow-brown.
(c)	Name apparatus Q in Figure 1 .	
(d)	Why were the starch solution and the an before mixing them together?	nylase solution left for five minutes
	Tick (✓) one box.	
	So that both solutions could reach 10 °C	3 · · · · · · · · · · · · · · · · · · ·
	So that the student could calculate a mean	
	So that the student could repeat the investigation	
	So that the student had time to draw a table of results	

Figure 2 shows the results.

Figure 2

(e) How many minutes did it take until the iodine solution and amylase-starch solution mixture was yellow-brown?

Use Figure 2.

 minutes	
	(1)

(f) How could a more accurate time be obtained?

Tick (\checkmark) one box.

Add more iodine solution to the spotting tile.

Test the mixture with iodine solution every 30 seconds.

Test the mixture with iodine solution for more time.

Use two drops of amylase-starch solution mixture in each test.

(1)

The student repeated the investigation at five different temperatures.

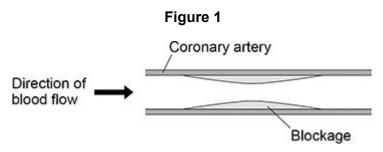
The table below shows the results.

Time taken until iodine solution and mixture was yellow-brown in minutes

20		5
35		2
50		7
65		12
80		Remained blue-black
(g)	Which temperatu	ure did the enzyme work quickest at?

0		Remained blue-black
J)	Which temperate	ure did the enzyme work quickest at?
	Tick (✓) one box	x.
	20 °C	
	35 °C	
	50 °C	
	65 °C	
)	Explain why the 80 °C.	iodine solution remained blue-black in the investigation at
		(Total 9 m

Page 4 of 77


(2)

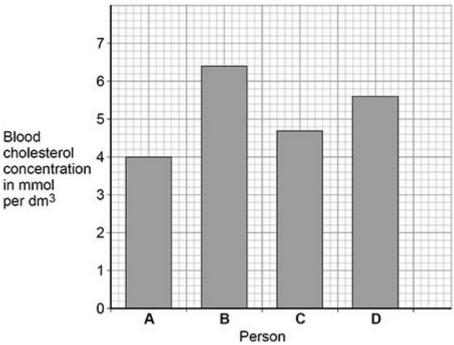
Q2.

A high cholesterol concentration in the blood can lead to blockages inside arteries.

The coronary arteries supply blood to the heart muscle.

Figure 1 shows a coronary artery with a blockage.

(a)	Why could the blockage in Figure 1 cause cells in the heart to die?


Doctors can measure the concentration of cholesterol in the blood.

The table below shows four different blood cholesterol categories.

Blood cholesterol concentration in mmol per dm ³	Cholesterol category
<4.6	Low
4.6–5.0	Normal
5.1–6.1	Medium
6.2 and above	High

Figure 2 shows the blood cholesterol concentration of four people.

Figure 2

		1 0 A		B Person	С	D	
Which	person	is in the n	nedium ch	nolesterol c	ategory	?	
Tick (v	/) one b	oox.					
A		В	С		D		
Which	person	is most at	risk of ha	aving a hea	rt attack	:?	
Tick (v	/) one b	OOX.					
A		В	С		D		
Give a	reason	for your a	answer to	part (c).			
		olesterol co			n D is g	reater th	nan the bloo
Calcul	ate how	many tim	ies greate	r.			

	Number	of times greater =
ure 3 shows how a conary artery.	a stent can be used to	treat a person with a blockage in a
	Figure	3
	Stent	Coronary artery
Direction of blood flow	→ <u> </u>	
		Blockage
Explain how a ste	ent works as a treatmo	ent for a person with a blockage in a
ients are given ant	i-clotting drugs after th	ney have a stent fitted.
-	vent clots forming in the	•
	e blood starts the bloo	
Tick (√) one box	Κ.	
Antibodies		
Plasma		
Platelets		
Red blood cells		
		

(h) When a stent is fitted the doctor gives the patient an injection of anti-clotting drugs.

The patient then takes one anti-clotting tablet every day.

Anti-clotting drugs:

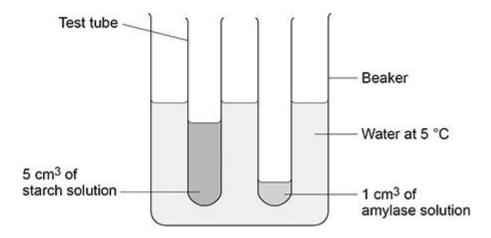
- are very effective
- can take a week to begin working fully
- have been used for over 60 years
- cost very little to make
- do **not** work effectively if the patient eats certain types of food.

The patient must have their blood tested every few weeks to check that the

anti-clotting drugs are working.	
Evaluate the use of anti-clotting drugs in patients who have had a stent fitted.	
(Tatal 44 mag	(4)
(Total 14 mai	'KS)
se is an enzyme that breaks down starch.	

Q3.

Amyla


Amylase is a polymer of smaller molecules. (a)

Name the type of smaller molecule.

2		
3		
xplain how a	mylase breaks down starch.	
nswer in terr	ns of the 'lock and key theory'.	
 		·

A student investigated the effect of temperature on the activity of amylase.

The figure below shows the apparatus used.

This is the method used.

- 1. Set up the apparatus as shown in the figure above.
- 2. After 5 minutes, pour the starch solution into the amylase solution and mix
- 3. Remove one drop of the starch-amylase mixture and place onto a spotting tile.
- 4. Immediately add two drops of iodine solution to the starch-amylase

mixture on the spotting tile.

- 5. Record the colour of the iodine solution added to the starch-amylase mixture.
- 6. Repeat steps 3 to 5 every minute until the iodine solution stays yellow-brown.
- 7. Repeat steps 1 to 6 using water at different temperatures.

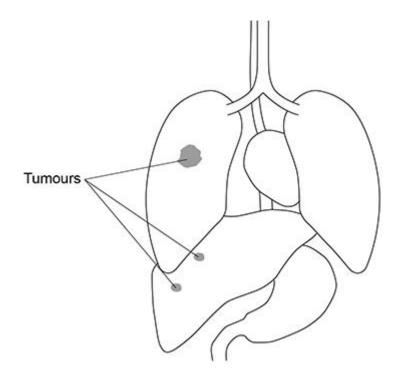
1 _	
Why	did the student leave the starch solution and amylase solution for 5
	tes before mixing them?

The table below shows the results of the investigation.

Temperature in °C	Time taken until iodine solution stays yellow-brown in minutes
5	did not become yellow-brown
20	5
35	2
50	7
65	14
80	did not become yellow-brown

(f)	What conclusion can be made about the effect of temperature on amylase activity between 20 °C and 65 °C?	
		(1)

(g) Explain the results at 5 °C and at 80 °C.


AQA Biology GCSE - Animal Tissues, Organs & Systems

The studen	t investigated the effect of temperature on amylase activity.
Describe ho	ow the student could extend the investigation to determine the different factor on amylase activity.

Q4.

Figure 1 shows where three of the same type of tumour were found in a patient.

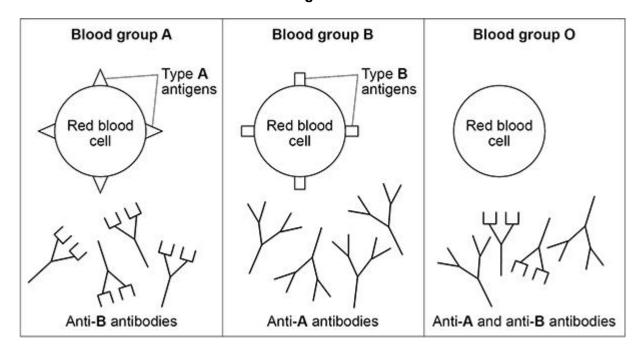
Figure 1

Malignant tumours are cancers

	at evidence is there in Figure 1 to suggest that the tumour in the lung is ignant?
	ne types of cancer can cause the numbers of blood components in a son's body to fall to a dangerously low level.
•	erson with one of these types of cancer may experience symptoms h as:
Suc	tiredness
•	
•	frequent infections

(6)

Some patients with a very low number of blood cells may be given a blood transfusion.


A blood transfusion is where a patient receives blood from a donor.

Different people have different blood groups.

Figure 2 shows:

- the red blood cells found in people with different blood groups
- the antibodies that can be made by people with different blood groups.

Figure 2

Antibodies can bind to antigens that have complementary shapes.

When antibodies bind to the antigens on red blood cells, many red blood cells begin to clump together.

It is dangerous for a patient with blood group A to receive red blood cells

Each red blood cell is about 8 µm in diameter.

Many capillaries have an internal diameter of about 10 µm.

In one type of blood transfusion, **only** red blood cells from a donor are transferred to the patient.

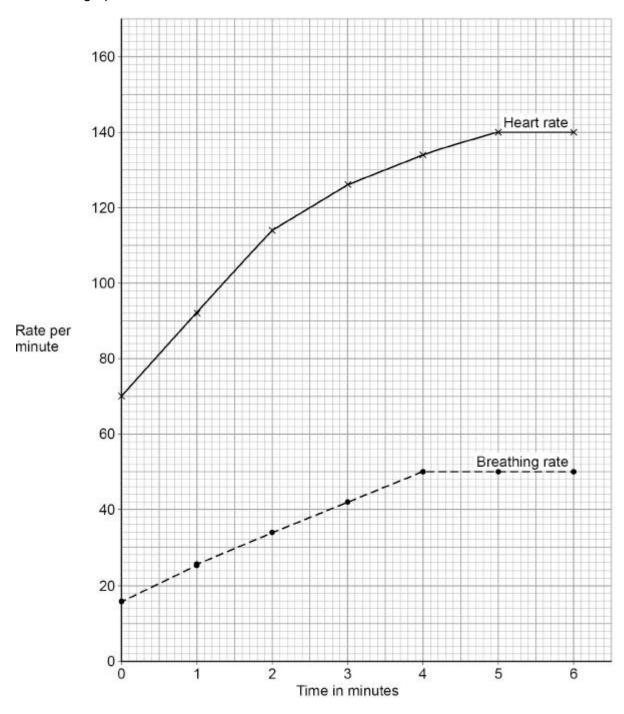
	d group O red blood cells can be given to patients with
any blood group.	

(f) The table below shows some of the risks associated with blood transfusions.

Risk	Probability of risk occurring
Allergic reaction	0.9 %
Hepatitis B infection	1 in (3 × 10⁵)

	Hepatitis C infection	6.7 × 10⁻ ⁷		
	Kidney damage	1 in 70 000		
	Which risk has th	he lowest probability of	occurring?	
	Tick (√) one box	Κ.		
	Allergic reaction	1		
	Hepatitis B infed	ction		
	Hepatitis C infe	ction		
	Kidney damage			40
(g)	A person has a t the small intestir		e leading from the gall bladder to	(1)
	Explain why this	person would have diff	iculty digesting fat.	

(5)


(Total 19 marks)

Q5.

A 45-year-old man exercised on a rowing machine for six minutes.

A fitness monitor recorded his heart rate and breathing rate every minute.

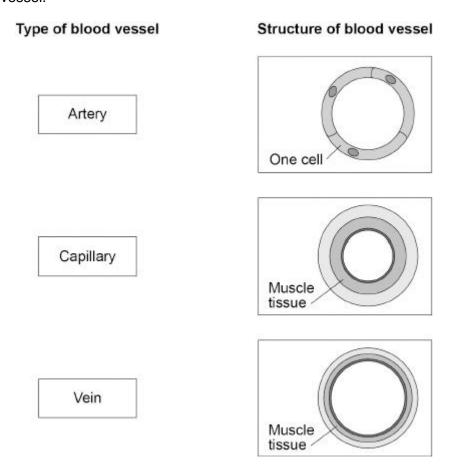
The graph below shows the results.

(a) Describe the trend for breathing rate shown in graph.

Use data from the graph in your answer.

The safe maximum heart rate for a person exercising can be calculated using the equation:
safe maximum heart rate = 220 - age in years
Calculate the safe maximum heart rate for the man.
Safe maximum heart rate = beats per minut
What is the man's maximum heart rate?
Use the graph above.
Man's maximum heart rate = beats per minut
The man concluded that he was exercising at a safe heart rate.
Give the reason for his conclusion.
Use your answers from part (b) and part (c)
Explain the ways the man's body has responded to the exercise.
Use information from the graph above.

(6)


(Total 12 marks)

Q6.

Blood is transported around the body in blood vessels.

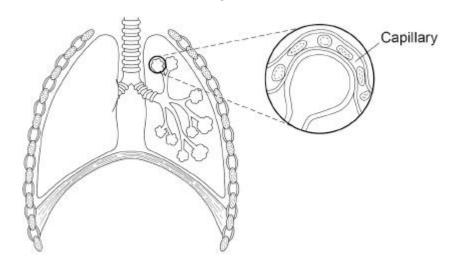
(a) Draw **one** line from each type of blood vessel to the structure of the blood vessel

(2)

_	
m	age below shows blood viewed through a microscope.
	Red blood cells A B
Ν	ame A and B in the image.
Æ	1
E	3
A	red blood cell: has no nucleus
•	contains a red pigment called haemoglobin.
	Suggest how these adaptations help the red blood cell carry out its unction.
Ν	lo nucleus
_	
	laemoglobin

(e)	The blood components are car blood.	ried around the b	oody in the li	quid part of the	
	What is the liquid part of the bloom	ood called?			
	Tick (✓) one box.				
	Cell sap				
	Plasma				
	Saliva				
	Urine				
					(1)
The	table below shows the results of	a man's blood to	est.		
Blo	od component	Patient results	Normal range		
Red	d blood cells	4.8	4.5 to 6.5		
Lyn	nphocytes	2.6	1.0 to 4.0		
Neu	utrophils	5.1	1.8 to 7.5		
Plat	telets	50	140 to 400		
(f)	Which component of the man's	blood is not with	in the norma	ıl range?	
					(1)
(g)	Suggest a symptom the man m	night show.			
					(1)
				(Total 11 m	arks)

(2)


7. Diffu	usion is an important process in animals and plants.
(a)	What is meant by the term diffusion?
(b)	Figure 1 shows part of a leaf.
(-)	Figure 1
	CO ₂ Mesophyll cell Stomata
	Molecules of carbon dioxide diffuse from the air into the mesophyll cells.
	Which two changes will increase the rate at which carbon dioxide diffuses into the mesophyll cells?
	Tick (✓) two boxes.
	Decreased number of chloroplasts in the cells
	Decreased surface area of cells in contact with the air
	Increased carbon dioxide concentration in the air
	Increased number of stomata that are open

Increased oxygen concentration in the air	
	(2)

(c) Diffusion also happens in the human lungs.

Figure 2 shows the human breathing system.

Figure 2

Explain how the human lungs are adapted for efficient exchange of gases by diffusion.

(6)

Figure 3 shows a root hair cell.

Figure 3 Key .. Water molecules ×× Nitrate ions (d) Name the process by which water molecules enter the root hair cell. (1) Nitrate ions need a different method of transport into the root hair cell. (e) Explain how the nitrate ions in Figure 3 are transported into the root hair Use information from Figure 3 in your answer. Name of process Explanation

(3) (Total 14 marks)

_	_	
$\boldsymbol{}$	n	
	×	
~	u	

Lipases break down lipids.

(a) Which **two** products are formed when lipids are broken down?

Tick (✓) **two** boxes.

Amino acids	
-------------	--

(2)

One model used to explain enzyme action is the 'lock and key theory'.

The diagram below shows a model of the theory.

(b) Explain the 'lock and key theory' of enzyme action.

Use information from the diagram above in your answer.

(3)

	udents investigated the presence of starch and glucose in the leaves of
•	ranium plants.
Th	is is the method used.
1	Place two identical geranium plants on a bench near a sunny window for two days.
2	After two days:
	leave one plant near the window for two more days.place one plant in a cupboard with no light for two more days.
3	Remove one leaf from each plant.
4	Crush each leaf to extract the liquid from the cells.
5	Test the liquid from each leaf for glucose and for starch.
De co	ntained glucose.
	ntained glucose.

The table below shows the students' results.

Test	Leaf from plant kept in light for four days	Leaf from plant kept in light for two days and then no light for two days
Glucose	Strong positive	Weak positive
Starch	Positive	Negative

Explain why the leaf left in a cupboard with no light for two days did contain glucose but did not contain starch.
Suggest one way the students could develop the investigation to find out more about glucose and starch production in plants.

Q9.

Data from 'The Million Women' survey in the UK was collected for over 15 years.

Scientists analysed the data to study the effect of consuming alcohol on liver disease.

The scientists:

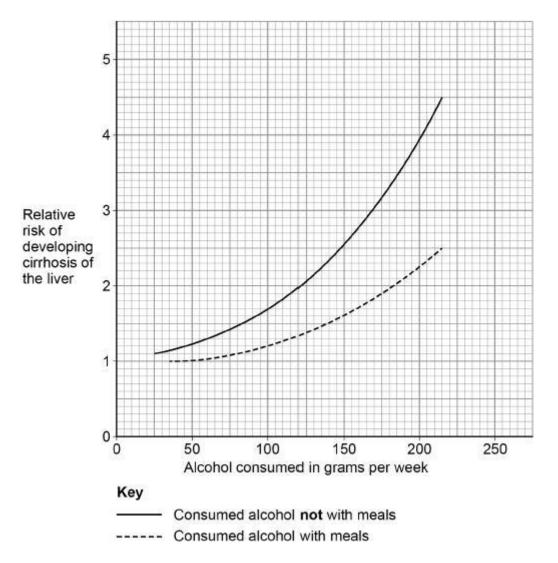
- included 400 000 women who regularly consumed alcohol
- included 400 000 women who did not consume alcohol
- excluded women who already had a liver disease.
- (a) Age and gender were two factors controlled in this analysis.

Many other factors were also controlled.

Suggest two other factors which the scientists would have controlled.		
1		
2		
•		

(2)

The data was analysed for:


- women who drank alcohol with meals
- women who drank alcohol **not** with meals
- women who did not drink alcohol.

During the survey approximately 1500 women developed a liver disease called cirrhosis of the liver.

Scientists calculated the relative risk of developing cirrhosis of the liver for each group who consumed alcohol.

A relative risk of 1.0 means there was no statistical difference between the groups who did consume alcohol and the group who did **not** consume alcohol.

The below graph shows a summary of the results.

(b) A woman drinks 150 g of alcohol per week **not** with meals.

The woman decides to change to drinking 150 g of alcohol per week with meals.

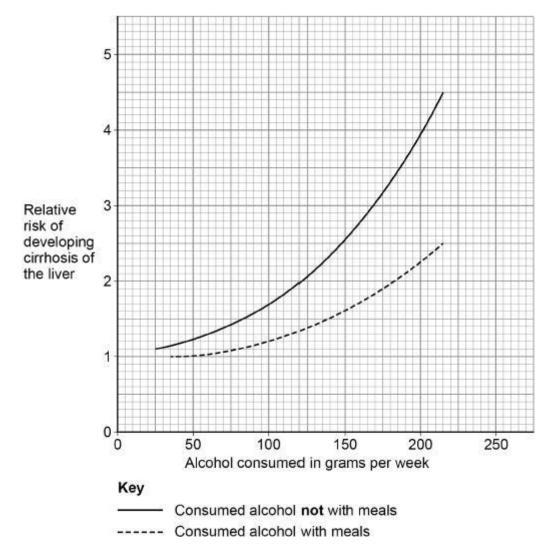
Calculate the percentage decrease in relative risk of developing cirrhosis of the liver for this woman.

Percentage decrease = _____ %

(2)

(c) One glass of wine contains 12 g of alcohol.

A different woman drinks two glasses of wine each day with her meals.


Calculate the relative risk of developing cirrhosis of the liver for this woman.

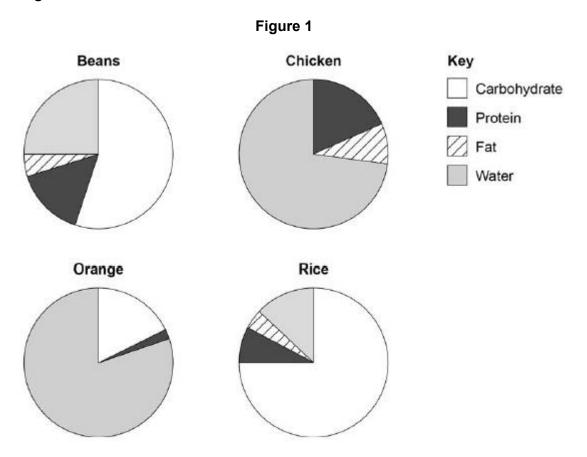
Relative risk = ____

(2)

The graph is repeated below.

(d) Consuming alcohol with meals instead of not with meals decreases the relative risk of developing cirrhosis of the liver.

AQA Biology GCSE - Animal Tissues, Organs & Systems


Jse dat	a from the graph in your answer.
1	
2	
Suggest	t two reasons why the data is considered to be valid.
	·
1	
2	
	one aspect of the survey which might reduce validity.
	one aspect of the survey which might reduce validity.
	one aspect of the survey which might reduce validity.
Suggest	one aspect of the survey which might reduce validity.
Suggest	one aspect of the survey which might reduce validity.
Suggest	one aspect of the survey which might reduce validity.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.
Suggest	one aspect of the survey which might reduce validity. s of the liver leads to liver failure.

(4)
(*)
(Total 15 marks)

Q10.

Many foods contain carbohydrates.

Figure 1 shows information about four different foods.

(a) Which food contains the highest percentage of carbohydrate?

Tick (\checkmark) **one** box.

Beans	
Chicken	
Orange	

AQA Biology GCSE - Animal Tissues, Organs & Systems

	Rice	
(b)	Estimate the percentage of water found in beans.	
	Percentage =	%
(c)	Look at Figure 1 .	
	Why would eating only beans provide a more balanced diet than eating only chicken?	
		-
(d)	Sugars are produced when enzymes break down starch.	
	What is the name of the enzyme which breaks down starch to produce sugars?	
	Tick (✓) one box.	
	Amylase	
	Bile	
	Lipase	
	Protease	
e)	Which chemical could be used to test for glucose?	
	Tick (✓) one box.	
	Benedict's reagent	
	Biuret reagent	
	Iodine solution	

	Sulfuric acid	
		(1)
(f)	What colour change would be seen in a positive test for glucose?	
	From blue to	
		(1)
(g)	People with diabetes have difficulty controlling the concentration of glucose in their blood.	
	The blood of four people was tested.	
	Table 1 shows the results.	

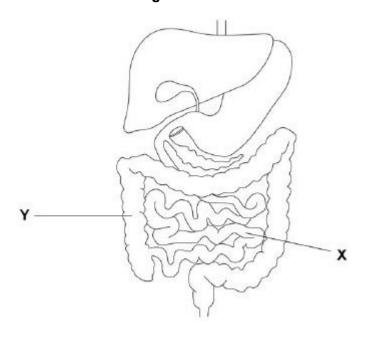
Table 1

Person	Concentration of glucose in blood in arbitrary units
A	4.2
В	6.9
С	7.1
D	5.1

Table 2 shows the information used to help decide if a person has diabetes.

Table 2

Concentration of glucose in blood in arbitrary units	Conclusion
<5.6	No diabetes
5.6 to 7.0	Mild diabetes
>7.0	Severe diabetes


Which person has severe diabetes?

Tick (✓) one box.

АВ	С	D	
----	---	---	--

Figure 2 shows part of the human digestive system.

Figure 2

(h	 Glucose is absorbed into the bloodst 	tream in part X.
----	--	------------------

Name part X.

(1)

(i) Complete the sentences.

Choose answers from the box.

active transport	digestion	excretion
osmosis	respiration	

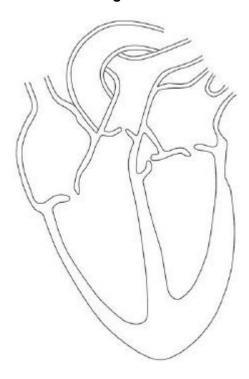
Some glucose is absorbed into the bloodstream against the concentration gradient

by the process of ______.

Water moves out of part Y and into the bloodstream by

the process of ______

(2)


(Total 10 marks)

Q11.

(a)

Figure 1 shows the internal structure of the human heart.

Figure 1

			- (1)

(b) Draw a ring around **one** valve on **Figure 1**.

Which organ system is the heart a part of?

(1)

(c) What is the function of the valves in the heart?

(1)

(d) Valves are also found inside some blood vessels.

Which type of blood vessel contains valves?

(1)

Sometimes a valve in the heart can begin to leak.

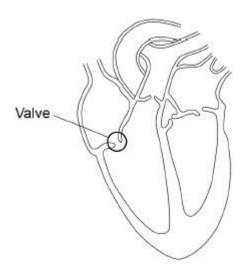
A leaking heart valve may be replaced with either:

- a mechanical valve
- a biological valve from a pig.

Table 1 shows information about the replacement valves.

Table 1

Mechanical valve	Biological valve from a pig
Made of plastic or metal	Made from living tissue
Can cause the blood to clot around the valve	No risk of blood clotting around the valve
No need for another replacement valve after 5 years	Sometimes another replacement valve is needed after 5 years


Suggest two reasons why a patien not a biological valve from a pig.	nt may choose a mechanical valve and
Suggest one reason why a patient oig and not a mechanical valve.	t may choose a biological valve from a
a person may develop other medic	
	cal conditions.
a person may develop other medic	cal conditions.
a person may develop other medic Oraw one line from each medical o	cal conditions.
a person may develop other medic Oraw one line from each medical o	cal conditions. condition to the correct treatment. Treatment
A person may develop other medical of the properties of the proper	cal conditions. condition to the correct treatment. Treatment Antibiotics

(4)

Q12.

The figure below shows the internal structure of the human heart.

One of the heart valves is labelled.

Sometimes a valve in the heart can start to leak.

Explain why a person with a leaking heart valve has difficulty exercising.

A patient with a leaking heart valve may have the valve replaced.

A study compared two different types of replacement heart valve:

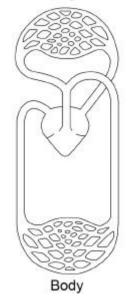
mechanical valves

biological valves from pigs.

The data used in the study was collected from female patients aged 50–69.

The following table shows the data.

	Type of replacement heart valv	
	Mechanical	Biological
Number of patients given the valve	2852	1754
Number of patients who died from heart-related problems after valve replacement	180	178
Percentage of patients alive after 5 years	91	89
Percentage of patients needing a second valve replacement within 6 years	2.2	5.2
Percentage of patients who had a blood clot on the brain after surgery	5.8	0.1


)	Give one conclusion about the death of patients from heart-related problems after a valve replacement.
	Include calculations to support your answer.
	One risk of mechanical valves is that blood clots can form on the surface of the valve.
	Name the component of the blood that starts the process of blood clotting.
	Evaluate the use of mechanical replacement heart valves and biological

replacement heart valves.

(Total 14
all animal called an axolotl lives in water. The axolotl has a double latory system.
Define the term double circulatory system.

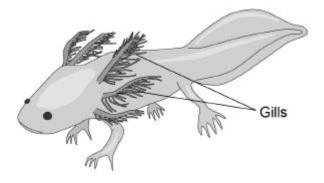
Figure 1

Gas exchange surfaces

(b) The heart of the axolotl has only one ventricle.

Label the ventricle on **Figure 1**.

(1)


em less

ī		
·-		

(2)

Figure 2 shows an axolotl.

Figure 2

(d) Explain why an axolotl may die in water with a low concentration of oxygen.

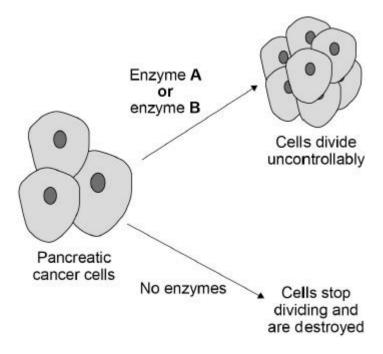
9	ill of an axolotl is removed, a new gill will grow in its place.
)	ntists hope to use information on how axolotls grow new gills to help with nerating human tissue.
ı	ntists hope to use information on how axolotls grow new gills to help with
)	ntists hope to use information on how axolotls grow new gills to help with nerating human tissue. Name the type of cell that divides when a new gill grows.
)	ntists hope to use information on how axolotls grow new gills to help with nerating human tissue.
- El	Name one condition that could be treated using regenerated human tissue. Suggest one reason why an axolotl is a suitable animal for research in the
)	Name one condition that could be treated using regenerated human tissue. Suggest one reason why an axolotl is a suitable animal for research in the

(Total 12 marks)

_	4	4
IJ	7	4

Pancreatic cancer develops when a malignant tumour grows inside the pancreas.

The pancreas produces digestive enzymes.
What is an enzyme?
Carbohydrase is an enzyme produced by the pancreas.
Name two other organs in the digestive system that produce carbohydrase.
1
2
One symptom of pancreatic cancer is weight loss.
Explain how pancreatic cancer may cause a person to lose weight.
Do not refer to hormones in your answer.


(4)

Enzyme **A** and enzyme **B** are involved in controlling cell division in pancreatic cancer cells.

Most cancer cells produce both enzyme **A** and enzyme **B**.

Some people have a gene mutation that stops cancer cells producing enzyme **B**.

The following figure shows how cell division is controlled in pancreatic cancer cells.

Scientists have developed a drug that inhibits enzyme A.

The drug is given to pancreatic cancer patients who have the gene mutation that stops cancer cells producing enzyme **B**.

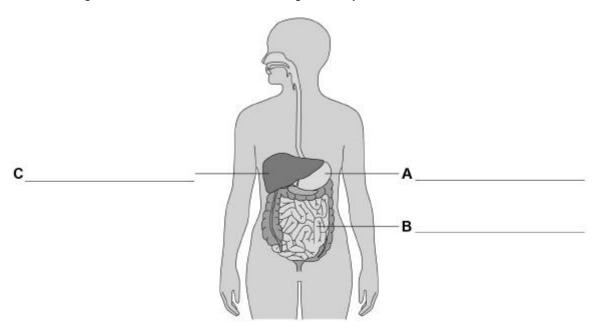
The drug only targets cancer cells.

(d)	Explain why the drug can be used to treat pancreatic cancer in patients with the gene mutation.
	Use information from the figure above.

patient that produces both enzyme	used to treat pancreatic cancer in a e A and enzyme B.
he drug was trialled before it was	licensed for use.
To improve validity of the results in	n the trial:
some patients were given aa double-blind trial was used	
Give reasons why a placebo and a	a double-blind trial were used.
A placebo	
One stage in a drug trial is to test t	he drug on healthy volunteers.
What is the next stage in the drug	trial?
Tick (√) one box.	
Testing on all patients with the disease	
Testing on human tissue	
Testing on live animals	
Testing on volunteers with the	

1	1	١
ı		ı

(h) A monoclonal antibody has been produced to treat pancreatic cancer.


Explain how the monoclonal antibody works to treat pancreatic cancer. (see	parate only)
	-
	-
	-
	-
	-

(Total 19 marks)

(3)

Q15.

The diagram below shows the human digestive system.

(a) Label organs A, B and C.

(3)

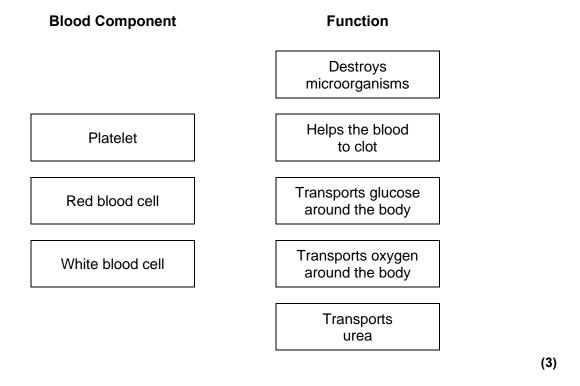
(b) Complete the sentences.

Choose the answers from the box.

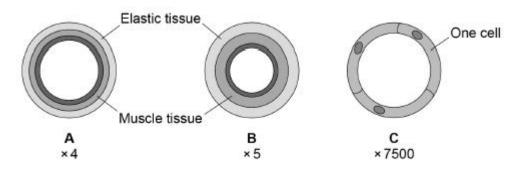
catalyse	denatured	digest	energise
excreted	ingested	insoluble	soluble

Digestion is the smaller	process of breaking down large food molecules into	
molecules that a	are	
Enzymes help t	o break down food because they	
chemical reaction	ons.	
If the temperatu	re of an enzyme gets too high, the enzyme is	
Protease is an e	enzyme.	
Protease break	s down protein.	
What is protein	broken down into?	
Tick one box.		
Amino acids		
Fatty acids		
Glucose		
Glycerol		
Why is protein r	needed by the body?	
Which organ in	the human digestive system produces protease?	
Tick one box.		
Gall bladder		
Large intestine		

AQA Biology GCSE - Animal Tissues, Organs & Systems

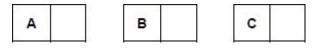

s protein.	I to show it contains p				
	u would take.	ecautions you v	r any safety pre	e the reason for	live the re
			ence.	mplete the sente	Complete t
				mplete the sente	
	ls vitamins	minerals			Choose the
		minerals	er from the box.	fat	Choose the
	ls vitamins	minerals	er from the box.	fat	Choose the
		minerals	fibre used by a diet I	fat	Choose the fat Obesity ca
		minerals	fibre used by a diet I	fat esity can be cau	fat Obesity ca Complete t

(1)


Q16.

This question is about the circulatory system.

(a) Draw **one** line from each blood component to its function.



(b) The diagram below shows cross sections of the three main types of blood vessel found in the human body. Each blood vessel is drawn to the scale shown.

Which blood vessel has the smallest diameter?

Tick one box.

(c) Which blood vessel in the figure above is an artery?

Give **one** reason for your answer.

Blood vessel: _____

	Table 1		
Pei	rson	Blood flow through the coronary arteries in cm ³ / minute	
A -	does not have coronary heart disease	250	
3 –	has coronary heart disease	155	
		cm [.]	³ / minute
e)	Suggest why blood flow through the corwith coronary heart disease.	cm [:] onary arteries is lower in po	
e)	Suggest why blood flow through the core	onary arteries is lower in po	eople
	Suggest why blood flow through the core with coronary heart disease. Calculate the volume of blood flowing the person A in 1 hour.	onary arteries is lower in po	eople

Coronary heart disease can be treated by:

inserting a stent

(g)

• using a Coronary Artery Bypass Graft (CABG).

Table 2 gives information about each method.

Table 2

	Stent	CABG
Procedure	The patient is awake during the procedure. A small cut is made in the skin. A wire mesh is inserted into the coronary artery via a blood vessel in the arm or leg.	The patient is not awake during the procedure. The chest is cut open. A section of blood vessel from the arm or leg is removed. It is used to create a new channel for blood to bypass the blockage in the coronary artery.
When procedure is recommended	When only one blockage is present	When multiple blockages are present
Time spent in hospital after procedure	2-3 hours	at least 7 days
Recovery time after procedure	7 days	12 weeks
Risk of heart attack during procedure	1%	2%
Chance of failure within one year	40%	5%

Give two advantages of using a stent instead of CABG.
1.
2.

Q1

1.			
			
2.			
			(Total 14 m
' able 1 shows infor	mation about s	some food components in	cow's milk.
		Table 1	
	Value per 500 cm ³	Recommended Daily Allowance (RDA) for a typical adult	
Energy in kJ	1046	8700	
Fat in g	8.4	70.0	
Salt in g	0.5	6.0	
Calcium in mg	605	1000	
√itamin B-12 in µg	4.5	2.4	
		a typical adult have to dring amount of milk needed	

(b) Describe how a student could test cow's milk to show whether it contains protein and different types of carbohydrate.

(6)

A scientist investigated the effect of bile on the breakdown of fat in a sample of milk.

The scientist used an indicator that is colourless in solutions with a pH lower than 10, and pink in solutions with a pH above 10.

This is the method used.

- 1. Add 1 drop of bile to a test tube and one drop of water to a second test tube.
- 2. Add the following to each test tube:
 - 5 cm³ of milk
 - 7 cm³ of sodium carbonate solution (to make the solution above pH 10)
 - 5 drops of the indicator
 - 1 cm³ of lipase.
- 3. Time how long it takes for the indicator in the solutions to become

colourless.

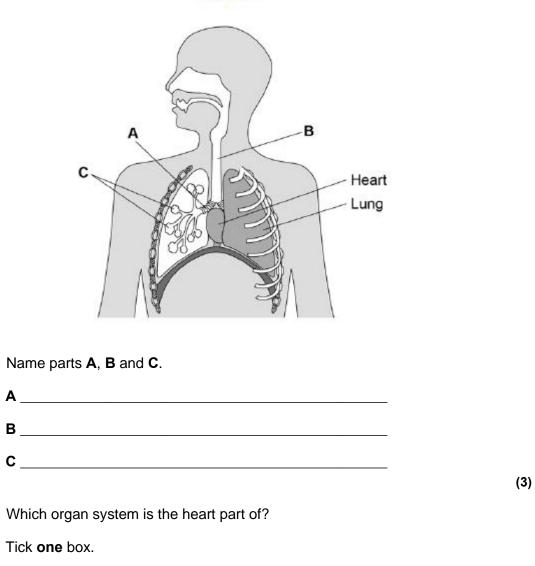
The results are shown in **Table 2**.

Table 2

	Time taken for the indicator to become colourless in seconds
Solution with bile	65
Solution without bile	143

Give the	e reason why the measurement of the time taken for the indicator to e colourless might be inaccurate.
Explain	the difference in the results for the two test tubes in Table 2 .

Q18.


Animals and plants contain organs and tissues.

(a)

(b)

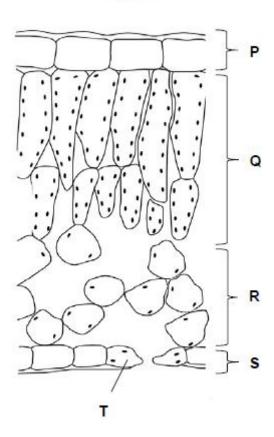
Figure 1 shows some organs in the human thorax.

Figure 1

Breathing system

Circulatory system

Digestive system


Excretory system

(1)

Figure 2 shows a cross section of a leaf.

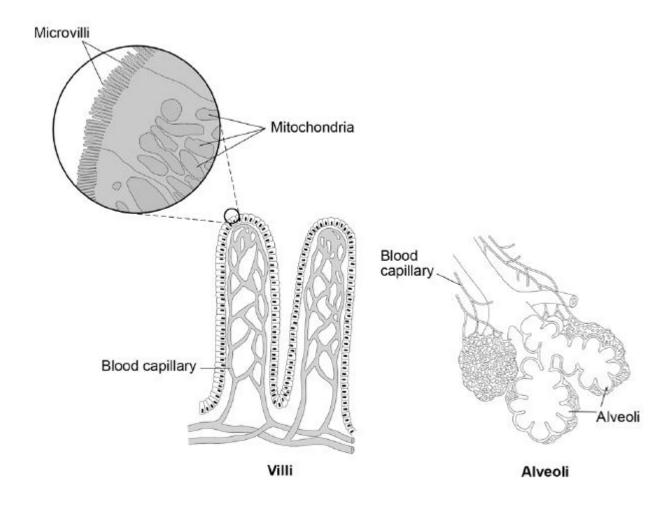
(1)

Figure 2

(c)	In which part of the	he leaf does most photosynthesis take place?	
	Tick one box.		
	P Q	R S	(1)
(d)	What is part T ?		
	Tick one box.		
	Guard cell		
	Phloem		
	Stoma		
	Xylem		

e)	A leaf is an organ made of tissues.	
	What is a tissue?	
(a)	Draw one line from each tissue to its function.	
	Tissue Function	on
	Allows diffusion through the	
	Epidermis Allows light thro photosynthesisir the lea	ng parts of
	Phloem Allows water int	to the leaf
	Spongy mesophyll Transport suga the plan	
	Transports water the plant	
		(Ta4al
		(Total
	e heart pumps blood to the lungs and to the cells of the body.	
(a)	Name the blood vessel that transports blood from the body atrium.	to the right
(b)	The aorta transports blood from the heart to the body.	
	In a person at rest:	
	 blood travels at a mean speed of 10 cm/s in the aorta 	
	blood travels at a mean speed of 0.5 mm/s in the cap	
	 the speed of blood decreases at a rate of 0.4 cm/s² a from the aorta to the capillaries. 	s blood trave

(4)


(c)

Assume that the speed of blood decreases at a constant rate. Use the equation: rate of decrease in speed = change in speed time Give your answer to 2 significant figures.
rate of decrease in speed = $\frac{\text{change in speed}}{\text{time}}$
Give your answer to 2 significant figures.
- <u></u>
Time =s
(4)
Describe the route taken by oxygenated blood from the lungs to the body cells.

- (d) The digestive system and the breathing system both contain specialised exchange surfaces.
 - In the digestive system, digested food is absorbed into the blood stream in structures called villi.
 - In the breathing system, gases are absorbed into

the blood stream in the alveoli.

The diagram below shows the structure of villi and alveoli.

Explain how the villi and the alveoli are adapted to absorb molecules into the bloodstream.

(6)

(Total 15 marks)

Q20.

Amylase is an enzyme found in the human body.

Amylase breaks down starch into sugars.

(a) Where is amylase produced in the human body?

Tick one box.

Liver and pancreas

AQA Biology GCSE - Animal Tissues, Organs & Systems

Liv	er and stomach
Sa	livary glands and pancreas
Sa	livary glands and stomach
Enz	rymes speed up chemical reactions.
Ξхр	lain how amylase breaks down starch.
_	
Эne	e sugar in the body is glucose.
Эlu	cose is used for respiration.
Giv	e one other use for glucose in the body.
	tudent investigated the effect of temperature on the activity of human /lase.
Γhis	s is the method used.
1.	
2.	Put 2 cm³ of 1% starch solution into a boiling tube.
3.	Put 2 cm³ of 1% starch solution into a boiling tube. Put 2 cm³ of amylase solution into a second boiling tube.
	•
4.	Put 2 cm³ of amylase solution into a second boiling tube.
4. 5.	Put 2 cm³ of amylase solution into a second boiling tube. Put both boiling tubes into a water bath at 20 °C. After 5 minutes, mix the amylase and the starch together in one

Why did the student leave the starch and amylase solutions in the water

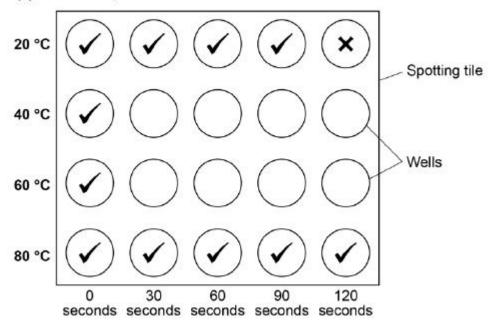
Repeat steps 1 – 6 at 40 °C and at 60 °C and at 80 °C

7.

bath for 5 minutes in	step 3 ?	
		(1)

(e) The temperature of the human body is 37 °C

The diagram below shows the results of the investigation at 20 $^{\circ}\text{C}$ and at 80 $^{\circ}\text{C}$


Complete the diagram to show the results you would expect at 40 $^{\circ}\text{C}$ and at 60 $^{\circ}\text{C}$

You should write a tick or a cross in each well of the spotting tile.

Starch present

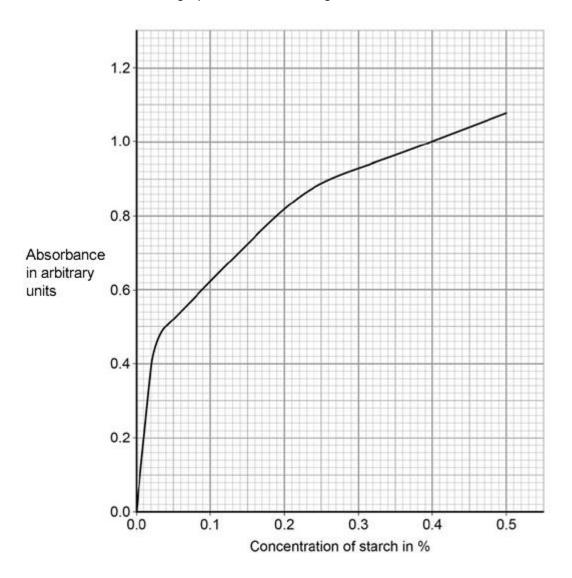
X Starch not present

(2)

(f) There are different ways to investigate the breakdown of starch by amylase.

One other method is to measure the **concentration** of starch present in the solution every 30 seconds.

Why is this method better than the method the student used?


(2)

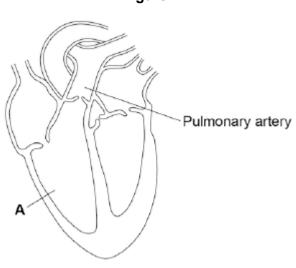
A colorimeter can be used to measure the concentration of starch present in the solution every 30 seconds.

A colorimeter measures the amount of light that **cannot** pass through a solution.

This is known as absorbance.

Below shows a graph of absorbance against concentration of starch.

(g) The absorbance of the solution at 40 °C was 0.56 arbitrary units after 30 seconds.


What was the concentration of starch in this solution?

	Concentration of starch =	_%	
			(
)	The concentration of starch in the solution at 20 °C after 1 minute is different from the concentration at 40 °C after 1 minute.		
	Explain why.		
			(
	Predict the absorbance for the solution at 80 °C after 30 seconds.		
	Give a reason for your answer.		
	Absorbance = arbitrary units		
	Reason		
			(
	(Total	16 ma	ark

Q21.

Figure 1 shows a diagram of the human heart.

Figure 1

AQA Biology GCSE - Animal Tissues, Organs & Systems

(a)	What part of the heart is labelled A ?			
	Tick one box.			
	Aorta			
	Atrium			
	Valve			
	Ventricle			
			(1)	
(b)	Where does the pulmona	ry artery take blood to?		
	Tick one box.			
	Brain			
	Liver			
	Lungs			
	Stomach			
			(1)	
(c)	Circle a valve on Figure	1.	(1)	
(d)	The coronary arteries sup	oply blood to the heart.		
	Figure 2 shows two coro	nary arteries.		

Figure 2

a	ealthy rtery co	Artery affected by oronary heart disease
Artery wall		Fatty deposit
	Blood fl	low
Describe two ways by coronary heart di		ery is different from the artery affected
l .		
<u>)</u> .		
rvnat can be used to Tick two boxes.	treat people w	vith coronary heart disease?
Antibiotics		
Hormones		
Statins		
Stent		
Vaccination		
uggest two risk fac	tors for coronar	ry heart disease.
l .		
2.		

(2)

(g) **Figure 3** shows the percentages of adults in the UK who have coronary heart disease.

Figure 3 20 18 16 14 12 Percentage (%) Key of adults who Female 10 have coronary Male heart disease 8 6 4

Calculate the difference in the percentage of male and female adults aged 65 and over who have coronary heart disease.

55-64

Age group

65 and over

_	 	 	%	
				(1)

(h) Which is the correct conclusion for the data in **Figure 3**?

18 - 54

2

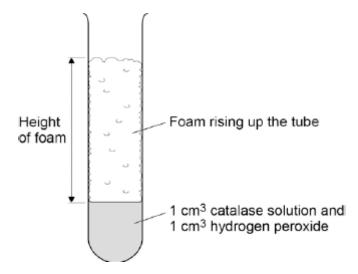
Tick one box.

Children do not suffer from coronary heart disease	
More males suffer from coronary heart disease than females	
More younger people suffer from coronary heart disease than older people	

(1) (Total 11 marks)

Q22.

Catalase is an enzyme.


Catalase controls the following reaction:

A student did an investigation on catalase activity.

This is the method used.

- 1. Put 1 cm³ hydrogen peroxide solution in a test tube.
- 2. Add 1 cm³ of catalase solution.
 - Bubbles of oxygen are produced.
 - Bubbles cause foam to rise up the tube.
- 3. Measure the maximum height of the foam.

The diagram below shows the experiment.

The experiment is carried out at 20 °C.

The table below shows some results from the investigation.

Temperature in	Maximum height of foam in cm					
°C	Test 1	Test 2	Test 3	Mean		
10	1.3	1.1	0.9	1.1		
20	0.0	3.3	3.1	3.2		
30	5.2	5.0	5.3	5.2		
40	4.2	3.5	4.4	4.0		
50	2.1	1.9	2.3	2.1		

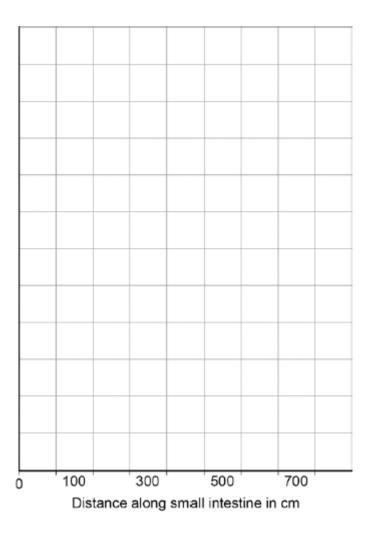
	60	0.0	0.0	0.0	0.0
Why did the temperature	e student carry out to	the experime	nt three ti	imes at ea	ach
Tick one b	OX.				
To make th	ne experiment more	e accurate			
To prove th	ne experiment was	correct			
To show th repeatable	ne experiment was	more			
The studen	t thought one resul	t was an anoi	maly.		
Circle the a	nomaly in the table	above.			
What did th	e student do with th	ne anomalous	s result?		
	table above.	as the tempe	erature in	creases?	
Tick one b		as the tempt		creases:	
	the rate of reaction	n up to 30 °C			
Decreases	the rate of reaction	n up to 40 °C			
Increases t	the rate of reaction	up to 30 °C			
Increases t	the rate of reaction	up to 40 °C			
At which ter	mperature was cata	alase denatur	ed?		
Tick one b	OX.				

AQA Biology GCSE - Animal Tissues, Organs & Systems

10 °C		
30 °C		
40 °C		
60 °C		
		(1)
The student thought the optimum temperabetween 30 °C and 40 °C.	ature for catalase activity was	
How could the investigation be improved the optimum temperature?	to find a more precise value for	
Tick one box.		
Do the experiment at 70 °C and 80 °C		
Do the experiment at 30 °C, 35 °C and 4	0 °C	
Use less hydrogen peroxide solution		
Use more catalase solution		
		(1)
Amylase is the enzyme that controls the l	breakdown of starch to glucose.	
Describe how the student could investigate breakdown of starch by amylase.	te the effect of pH on the	
	30 °C 40 °C 60 °C The student thought the optimum temperabetween 30 °C and 40 °C. How could the investigation be improved the optimum temperature? Tick one box. Do the experiment at 70 °C and 80 °C Do the experiment at 30 °C, 35 °C and 40 Use less hydrogen peroxide solution Use more catalase solution Amylase is the enzyme that controls the Describe how the student could investigate.	30 °C 40 °C 60 °C The student thought the optimum temperature for catalase activity was between 30 °C and 40 °C. How could the investigation be improved to find a more precise value for the optimum temperature? Tick one box. Do the experiment at 70 °C and 80 °C Do the experiment at 30 °C, 35 °C and 40 °C Use less hydrogen peroxide solution Use more catalase solution Amylase is the enzyme that controls the breakdown of starch to glucose. Describe how the student could investigate the effect of pH on the

(4)
` '
(Total 10 marks)

Q23.


After a meal rich in carbohydrates, the concentration of glucose in the small intestine changes.

The table below shows the concentration of glucose at different distances along the small intestine.

Distance along the small intestine in cm	Concentration of glucose in mol dm ⁻³
100	50
300	500
500	250
700	0

(a)	At what distance along the small intestine is the glucose concentration highest?		
		_ cm	
			(1)

- (b) Use the data in the table to plot a bar chart on the graph below.
 - Label the *y*-axis.
 - Choose a suitable scale.

(4)

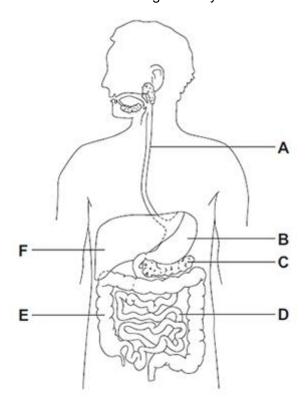
(c) Look at the graph above.

(d)

along the small intestine.	
	(2
Explain why the concentration of glucose in the small intestine changes between 100 cm and 300 cm.	

AQA Biology GCSE	- Animal Tissues	. Organs &	Systems
-------------------------	------------------	------------	---------

(e)	Explain why the concentration of glucose in the small intestine changes between 300 cm and 700 cm.	
		_
		_
		_
		_
		_
		_
		_
	(Total 12	2 ma
	(Total 12	2 ma
		2 ma
Ехр	lain how the human circulatory system is adapted to:	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to:	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma
4 . Exp	lain how the human circulatory system is adapted to: supply oxygen to the tissues	2 ma


Page 71 of 77

Q25.

The digestive system breaks down food into small molecules.

The small molecules can be absorbed into the blood.

The diagram below shows the human digestive system.

(a) (i) Which letter, **A**, **B**, **C**, **D**, **E** or **F**, shows each of the following organs?

Write one letter in each box.	
large intestine	
small intestine	
stomach	

(3)

(ii) Different organs in the digestive system have different functions.

Draw **one** line from each function to the organ with that function.

Function	Organ
	Large intestine
Digestion of fat	
	Liver
Absorption of water into the blood	,
	Small intestine
Production of hydrochloric acid	
	Stomach
	(3)
(b) Glucose is absorbed into the blood in the sma	all intestine.
Most of the glucose is absorbed by diffusion.	
How does the glucose concentration in the bloconcentration in the small intestine?	ood compare to the glucose
Tick (✓) one box.	
The concentration in the blood is higher.	
The concentration in the blood is lower.	
The concentration in the blood is the same.	
	(1) (Total 7 marks)
Q26.	
Enzymes are made and used in all living organisms	
(a) What is an enzyme?	

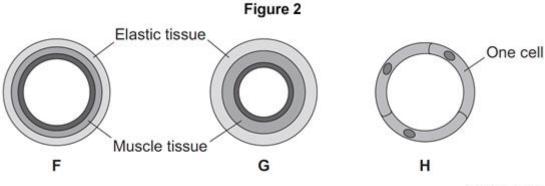
	_			
(b)	Man	y enzymes work insid	e cells.	
	In w	hich part of a cell will	most enzymes work?	
	Drav	v a ring around the co	rrect answer.	
	С	ell membrane	cytoplasm	nucleus
(c)	We	can also use enzymes	s in industry.	
	Hyd	rogen peroxide is a ch	emical that can be used	to preserve milk.
	Adding a small amount of hydrogen peroxide to the milk kills the bacteria that cause decay. Hydrogen peroxide does not kill all disease-causing bacteria.			
	The enzyme catalase can be added later to break down the hydrogen peroxide to oxygen and water.			
		ferent way of preserv °C for a few seconds.	ing the milk is by heating	it in large machines to
			nd one disadvantage of milk instead of using hea	
	Adva	antage of hydrogen pe	eroxide and catalase	
	——————————————————————————————————————	dvantage of hydroger	n peroxide and catalase	
				(Total 5
				(
7 .				
The	heart	is part of the circulato	ry system.	
(a)	(i)	Name one substant system.	e transported by the blo	od in the circulatory

(ii)	What is the main type of tissue in the heart wall?	
		 (1)

(b) Figure 1 shows the human heart.

Figure 1

B
C
D
E


- (i) Which blood vessel, **A**, **B** or **C**, takes blood to the lungs?
- (1)

(ii) Name parts **D** and **E** shown in **Figure 1**.

D _____

(2)

(c) Figure 2 shows three types of blood vessel, F, G and H.

Not to scale

(i) What type of blood vessel is F?

Q28.

		Tick (√) one box.	
		an artery	
		a capillary	
		a vein	(4)
	/ii\	A man needs to have a stant fitted to provent a heart attack	(1)
	(ii)	A man needs to have a stent fitted to prevent a heart attack.	
		In which type of blood vessel would the stent be placed?	
		Tick (√) one box.	
		an artery	
		a capillary	
		a vein	
	(iii)	Explain how a stent helps to prevent a heart attack.	(1)
			(2)
		(Total 9 ma	(2) arks)
0			
8. The	circula	atory system contains arteries and veins.	
(a)	(i)	Describe how the structure of an artery is different from the structure of a vein.	

(b)

(ii)	A comparison is made between blood taken from an artery in the leg and blood taken from a vein in the leg.
	Give two differences in the composition of the blood.
	1.
	2.
	ng operations patients can lose a lot of blood. Patients often need transfusions to keep them alive.
The	ext shows information about a new artificial blood product.
Scientist The scie slood ar worms of During the	s have carried out a five-year trial using a new artificial blood product. Intists have used a protein from sea worms to create the new artificial of the results from the trial are very positive. Thousands of sea an be grown and collected. The trial, mice were given blood transfusions of the artificial blood. The fithe mice tolerated the artificial blood and the artificial blood did not my side effects.
	jest two possible advantages of using the new artificial blood, instead ing human blood for a transfusion in humans.
1.	
2.	